High stringency evaluation of the inactivation / exclusion efficacy of a MALDI-TOF MS chemical extraction method, with filtration of extract through 0.1 µm filters, on Bacillus anthracis Vollum vegetative cells and spores
نویسندگان
چکیده
A previous report indicated that a formic acid chemical extraction method for the preparation of protein extracts for matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) identification, with filtration of extracts through 0.2 μm regenerated cellulose (RC) filters, would not reliably inactivate or exclude Bacillus anthracis Vollum cells or spores when tested under high stringency conditions. B. anthracis was recovered from 13/36 extracts (3/18 from vegetative cell extracts and 10/18 from bacterial spore extracts). In this paper we report the repetition of this study but with the substitution of the 0.2 μm, regenerated cellulose, filters with 0.1 μm polyvinylidene fluoride (PVDF) filters. Experiments were conducted under the same high stringency post-treatment viability test methods (100% of resulting protein content; 7 days Luria (L)-broth and a further 7 days L-agar plate incubation; or 7 days L-agar plate only incubation). B. anthracis was not recovered from any of 18 replicates generated from high concentrations of vegetative cells (107 to 108 cfu), but a single B. anthracis colony was recovered from one of 18 replicates generated from high concentrations of bacterial spores (108 cfu), using a post-treatment viability culture method of 7 days on L-agar plate only. We discuss our results in the context of other similar studies and also a requirement to develop standardised post-treatment viability test methods.
منابع مشابه
Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores
A chemical (ethanol; formic acid; acetonitrile) protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters), indicate...
متن کاملDetermination of anthrax foci through isolation of Bacillus anthracis form soil samples of different regions of Iran
To isolate and detect anthrax spores form soil in different regions of Iran in order to find the anthrax foci‚ a total of 668 environmental specimens were collected during 2003-2004. Bacterial endospores were extracted from soil specimens via flotation in distilled water, incubation at room temperature, filtration, heat shock and culture on blood agar and selective PLET media. Bacillus anthraci...
متن کاملDiscrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry
The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores usin...
متن کاملEvaluation the Efficacy of Anthrax Vaccine against Challenge with a Highly Virulent Strain of Bacillus anthracis Isolated from Soil in Sheep, Goats and Guinea Pigs in Iran
Protection of animals immunized against Bacillus anthracis is usually demonstrated by challenging with an appropriate dose of a strain of Bacillus anthracis that is lethal to unvaccinated animals inoculated at the same time. In this study the protective efficacy in anthrax vaccine (34F2 sterne strain spore) was evaluated in sheep, goats and guinea pigs challenged with subcutaneous inoculation...
متن کاملEffects of L-alanine and inosine germinants on the elasticity of Bacillus anthracis spores.
The surface of dormant Bacillus anthracis spores consists of a multilayer of protein coats and a thick peptidoglycan layer that allow the cells to resist chemical and environmental insults. During germination, the spore coat is degraded, making the spore susceptible to chemical inactivation by antisporal agents as well as to mechanical inactivation by high-pressure or mechanical abrasion proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017